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The radial responses of free and encapsulated microbubbles excited by an ultrasonic

plane wave with a large wavelength in comparison with the bubble size are governed

by NonLinear Ordinary Differential Equations (NL-ODEs). The nonlinear frequency

response gives the harmonic content of the time response and constitutes the expected

analysis of modified ‘‘RPNNP’’ (bubble), Hoff and Marmottant (contrast agents) models

is performed with an open-source software program. For this purpose, the original

NL-ODEs are recast into nonlinear systems in which the nonlinearities are at most

quadratic. In the spectral domain, this recast provides close form and aliasing-free

solutions of arbitrarily large numbers of harmonics. Relevant quantities such as primary

and secondary resonances and the nonlinear amplitude threshold of the excitation wave

are evaluated. The frequency curves drawn up characterize the bending and quantify

the jump frequencies and amplitudes of each harmonic component. The results

obtained with this predictive method confirm that it should provide a useful tool for

nonlinear bubble detection and sizing and for contrast agent designing.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Studies on the nonlinear responses of microbubbles to ultrasound excitations have many applications, including the
detection and sizing of bubbles [1–6] in environmental (ocean) contexts [7,8], and in the field of engineering [9,10], they
range from the propeller damage induced by cavitation to drag reduction by supercavitation [11,12], valve leakage,
chemical process control [13], and the monitoring of liquid sodium coolant for nuclear reactors [14,15]. In the biomedical
field, they include the prevention of decompression sickness (in extravehicular diving and space activities [16]) and
medical imaging with contrast agents (i.e. encapsulated microbubbles) [17–19,21–26]. In the latter field, it has been
established that under specific conditions, the sole second harmonic signal generated by bubbles and Ultrasonic Contrast
Agents (UCAs) can yield enhanced contrast information (for bubble/tissue discrimination purposes) in comparison with the
global signal containing the fundamental component. This application to bubble/tissue discrimination using the second
harmonic is based on the fact that the nonlinear responses of tissues are much weaker than those of bubbles and contrast
agents. The second harmonic imaging potential of UCAs has been thoroughly investigated by a number of research
institutions and private companies in order to determine relevant physical parameters for improving the second harmonic
backscattering cross section. However, in practice, second harmonic imaging methods have several drawbacks: first, the
data/images are altered by an attenuation of the second harmonic components greater than that undergone by the
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fundamental one, which reduces the range (the depth of penetration) of the second harmonic imaging. Second, since
commercial ultrasound scanners use relatively large output power (Mechanical Index, MI40:3), the significant second
harmonic signal produced by the tissue itself impinges on the contrast of the bubbles or agents [27–30]. It has been
established in particular [31] that the level of tissue harmonics due to nonlinear propagation depends mainly on the peak
pressure but not on the pulse energy. In tissues, for example, chirp excitation produces significantly fewer harmonics than
equal energy pulses: in the case of the second harmonic, the difference can be greater than 10 dB [32]. However, due to the
‘‘damped behavior’’ (hysteresis) of bubbles, their responses depend on both the peak amplitude and the pulse length, and
chirp excitation causes larger bubble wall excursions than equal amplitude pulses. Therefore, in the B-mode image, a 10-dB
improvement in the signal to noise ratio (SNR) is obtained [32]. Nonetheless, the challenge in ultrasound contrast imaging
is how to discriminate more clearly between the perfused tissue and the contrast bubbles: this possibility is usually
expressed by the Contrast to Tissue Ratio (CTR). It has been reported that bubbles generate more energy at sub/higher
harmonics than tissues, especially in low frequency transmissions [33]. The CTRs obtained with a dual frequency probe
(0.9, 2.96 MHz) reached high levels at the super harmonic frequencies (third–fourth–fifth) up to 50 dB, whereas the CTRs
obtained with a normal probe operating in the second harmonic mode gave values at least 30 dB lower [34]. However, the
main drawbacks with super harmonic imaging are the poor sensitivity and the SNR: since super harmonics involve less
energy than that occurring at second harmonic level, the detection of bubbles is more susceptible to background noise.
Subharmonic signals have a higher signal to background noise ratio than the second harmonics [35,36]. In addition, in
order to prevent tissues from being damaged by cavitation, the use of non-destructive contrast agent imaging is currently
being envisaged for blood flow assessment purposes. In this context, low Mechanical Index (MIo0:1) approaches are
required which minimize not only the image artifacts due to NL propagation but also the NL bubble echoes, which degrade
both the SNR and CTR. This issue could be partly solved if it was possible to use most of the major harmonics,
ultraharmonics and subharmonics generated by the pulsating bubbles. The detection capacity, the range and the resolution
of these methods might be improved by using specific coded sequences (pulse compression techniques). Also, the bubble
(and contrast agent) signature characterization might be enhanced by using a time–frequency representation of the global
response (including the fundamental). A technique based on Golay phase encoding, Pulse Inversion, and Amplitude
Modulation (GPIAM) was recently developed for performing contrast imaging with ultrasounds. A 12-dB improvement in
the CTR was obtained using an 8-chip GPIAM sequence in comparison with a conventional Pulse Inversion (PI) method,
and a 6.5-dB increase in the CTR was observed in comparison with a Pulse Inversion Amplitude Modulation (PIAM)
sequence [37].

Given the importance of large bubble oscillations at resonance frequencies, it was therefore proposed to characterize
the nonlinear acoustical responses of bubbles depending on the local context. This should pave the way to designing fairly
accurate inversion procedures yielding information about the bubble size, the possible attachment of the contrast agent
targeting neighboring tissues and the mechanical behavior of these neighboring tissues, for instance. In order to
distinguish more clearly between the bubbles/tissues and improve their detection and characterization, nonlinear
frequency responses of bubbles and contrast agents were obtained using various models and a high order Harmonic
Balance Method (HBM) combined with a Continuation Method. This method, which was implemented in a software suite
[38], has been described in detail in a previous paper [39]. It gives highly accurate approximations of the full responses,
including stable and unstable solutions, the accuracy of which depends on the number (which can be large) of harmonic
terms in the driving source involved. From the practical point of view, only a little experience in the field of bubble
dynamics is required to be able to define the stable branches.

Since the main features of nonlinear as well as those of linear acoustic responses of microbubbles to ultrasound lie in
their radial oscillations, this paper, like most of the literature on the subject, focuses on the radial oscillations of bare and
coated spherical microbubbles. At least as far as stable oscillations are concerned, the main difference between models is
the type of damping (thermal loss, radiation damping, fluid viscosity, shell buckling, etc.) involved. In the case of bare
bubbles, modeling the problem leads to the so-called Rayleigh–Plesset equation and its generalization, the RPNNP model
(referring to Rayleigh, Plesset, Nolting, Neppiras and Poritsky: the term was suggested by Lauterborn) [40] and its
corrected form (including sound radiation) [41] or its alternative in terms of the Keller–Miksis model [42]. In the case of
coated bubbles, modeling leads to equivalent equations that differ in terms of the shell behavior (the viscosity,
hyperelasticity, etc.). Among the various models for the agents, one might quote those developed by Church [19], Hoff et al.
[21] and Marmottant et al. [23]. In the corresponding NonLinear Ordinary Differential Equations (NL-ODEs) thus obtained,
the time evolution of the radius of the bubble depends on the ultrasonic load. In most cases, the harmonic activation
produced by an incident harmonic ultrasonic plane wave has been studied. When the amplitudes of the oscillations are not
too large, classical perturbation methods [43,44] can be used, and these have been applied to solve these NL-ODEs,
resulting in a small parameter dependency and control. This category of studies includes many analytical methods based
on low order (second or third) approximations, such as those presented in the pioneering (and surprisingly rarely cited)
paper by Nayfeh and Saric [45], who used a multiple scale method to obtain frequency responses showing the same
‘‘softening’’ behavior as bubbles. The simplicity of the parametrization procedure has given rise to great interest in this
method, which was used by several authors [46,47], whereas Prosperetti [48] used another classical perturbation method,
the Averaging Method. Again with a view to simulating the frequency responses, second-order small parameter combined
with second-order harmonic balance developments was used by many authors such as Church [19] and Khismatullin and
Nadim [49] in order to find explicit expressions. In line with Lauterborn [40], other authors chose the opposite approach
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consisting of the full numerical resolution in the time-domain, followed by a Fourier analysis in order to extract the
transfer function: [42,50] and more recently [22,24–26,51]. The method based on the purely numerical resolution of
the time-domain ODE is currently the only method giving a highly accurate approximation of the solution. However, this
approach yields only the stable solutions of the equations, and looking for hysteretic solutions and for each harmonic and
sub-harmonic component of the response is not an easy task. A Harmonic Balance Method without any small-parameter
developments is a more suitable means of high accuracy frequency response assessment. However, when the oscillations
are large, i.e., when there are resonances, a development with a high number of harmonics is required to obtain a
sufficiently high level of accuracy. Since the explicit balancing of a large number (a number greater than or equal to two) of
harmonics is rather cumbersome, an automated balancing technique was employed here. This approach, in which a
Harmonic Balance Method (HBM) was combined with a Continuation Method in the framework of Asymptotic Numerical
Methods (ANMs) [52], was described in detail in a previous paper [39]. It resulted in an interactive, free, open access
software program written for the Matlabs environment, named Manlabs [38]. This software program was consistently
used in the present study to model three kinds of microbubbles: the RPNNP model [40] and a modified version of this
model (taking radiation losses into account) [41,53] focusing on the free microbubble responses and two other models
describing thinly encapsulated microbubbles. The first model of the latter kind, which was developed by Hoff et al. [21],
was a thin-shell version of the Church model [19], and the second one, which was developed by Marmottant et al. [23],
accounts for buckling and rupture. The latter model is restricted here, however, to the elastic behavior of the shell. These
two models are known to be appropriate for simulating the latest generation of UCAs, polymer-shelled contrast agents and
lipid-shelled contrast agents, respectively.

In the present numerical experiments, it is assumed that the radial nonlinear behavior of the microbubble or the
contrast agent is sufficiently well characterized by its first three components (the fundamental plus two harmonics).
The expansion of the solutions is in fact performed on the first four harmonics, to which we add the null frequency
component. In practice, this should suffice when the attenuation coefficient of the host medium is linearly dependent
on the depth at which the bubble is located and on the frequency, as in the case of ‘‘soft’’ tissues in biomedical engineering.
Free bubbles in water may require performing a higher Fourier decomposition to be modeled with reasonably
good accuracy because of the low viscosity of water, which reduces the absorption process. The dedicated software used
here was based on a simple quadratic recast principle, which makes it possible to avoid the need for iterative processes
(there are no convergence problems and no unpredictable computation costs), temporal discretization (it is a frequency
domain approach), and the use of numerical schemes in the computation of the derivative (the Jacobian can easily
be calculated analytically). The original bubble models are thus transformed into new nonlinear systems (extended
state equations), in which the nonlinearities are at most quadratic. The application of the harmonic balance method to
quadratic models is recognized at once even if one is searching for solutions to problems involving large numbers of
harmonics.

In order to give an explicit picture of the transformation procedure, we will start by presenting the method used to
recast the nonlinear system in order to have at most quadratic polynomial nonlinearities. For this purpose, we take the
simple case of the forced Duffing oscillator [39]. This simple model corresponds fairly closely to the free bubble radial
oscillations in a viscous fluid described by Lauterborn.
2. Generic model: the forced Duffing oscillator

The normalized forced Duffing oscillator is described by the following non-autonomous equation:

€uþ2m _uþuþau3 ¼ f cosðltÞ: (1)

In this model, the damping coefficient m, the degree of nonlinearity a and the force amplitude f are constant; the forcing
angular frequency is taken to be the varying parameter l. By taking vðtÞ ¼ _uðtÞ and $ðtÞ ¼ u2ðtÞ, this equation can be recast
in quadratic form:

_u ¼ v

_v ¼ f cosðltÞ �2mv�u �auj
0|{z}

mð _ZÞ

¼ 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
cðt,lÞ

$|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
lðZÞ

�uu|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qðZ,ZÞ

,

8>>>>><
>>>>>:

(2)

where Z¼ ½u,v,$�t , and the forcing term is written in terms of c. The forcing angular frequency is related to the response
frequency by taking o¼ kl (where k is an integer). In the Harmonic Balance Method, the term uðtÞ is expanded into
harmonics with respect to o. The compact expression for the equivalent quadratic system is therefore

mð _ZÞ ¼ cþ lðZÞþqðZ,ZÞ: (3)

The unknown vector Z (size Ne) contains the original components u and v plus the auxiliary variable $ added to
transform (1) into the quadratic form (2). The right-hand side of (2) comprises vector c, which is independent of Z; m and
l are linear operators acting on Z; q is a quadratic vector operator that is linear with respect to both inputs.
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The harmonic balance method consists in searching for periodic solutions to Eq. (2): these solutions are expressed as
truncated Fourier series:

ZðtÞ � Z0þ
XH

k ¼ 1

ðakcos kltþbksin kltÞ: (4)

Substituting this expression into system (2) and balancing the terms corresponding to the frequency components
ððak,bkÞ, 1rkrHÞ give a system of ð2Hþ1Þ � Ne algebraic equations for ð2Hþ1Þ � Neþ1 unknowns: the ð2Hþ1Þ � Ne

components of vector Z and angular frequency l. The branches of solutions of this algebraic system are then followed using
a dedicated continuation (ANM) method, which can be used to solve nonlinear algebraic systems of the form

GðU,lÞ ¼ 0: (5)

Here, G and U have the same dimension N¼ ð2Hþ1Þ � Ne. The ANM principle consists in following (approximating)
branches of solutions assumed to be power series of the pseudo-arclength path parameter s. Let xðsÞ ¼ ðUðsÞ,lðsÞÞ be the
current branch, x0 be a regular solution and _x0 ¼ ðdx=dsÞðx0Þ be the tangent. By projecting this solution onto _x0, the
pseudo-arclength parameter s can be defined as

ds¼ dxT � _x0: (6)

A section of the branch crossing x0 is found using the following development:

Upmax ðsÞ ¼ U0þ
Xpmax

p ¼ 1

spU0,p,

lpmax ðsÞ ¼ l0þ
Xpmax

p ¼ 1

spl0,p,

8>>>>><
>>>>>:

(7)

where pmax is an arbitrary integer (pmax ¼ 30 in Manlab). Then, in the neighborhood of x0, a Taylor series expansion of G,
i.e., a power series of the pseudo-path parameter s, yields pmax systems of Nþ1 linear equations. The length of this part of
the branch (the section) is calculated a posteriori using a user-defined parameter e:

8s 2 ½0,smax�, jGðUðsÞ,lðsÞÞjoe: (8)

This approach has two advantages: first, the computational cost of the series is low since all the linear systems to be
solved have the same Jacobian matrix. Second, the lengths of the sections are given by the values of smax: no step-length
strategy is therefore required and the continuation algorithm is very robust.

This procedure yields only approximate solutions, since in expansion (4), no harmonic terms greater than H are
included. However, if the number of harmonics H is large enough, accurate solutions can be obtained.

Fig. 1 shows the frequency–amplitude diagram of the response obtained in the case of a ‘‘hardening’’ system (aZ0).
A classical bent resonance curve as well as some additional peaks corresponding to superharmonic resonances can

be observed. Note that only the individual amplitudes Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

u,iþb2
u,i

q
of the odd harmonics have been plotted, since the

even harmonics (A0,A2,A4, . . .) are equal to zero. The frequency responses of ‘‘softening’’ systems (ar0) are shown in
Figs. 2 and 3, where instabilities and the so-called jump-frequencies can be observed. As we will see below, bubbles and
contrast agents are mainly softening systems. At the jump-down (respectively, the jump-up) frequency, the vibration
amplitude of the system suddenly decreases (paths [3]–[4] on the curves) (respectively increases (paths [3u]–[2])) when it
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is excited harmonically with a slowly increasing (respectively decreasing) frequency. The frequencies at which these jumps
occur depend on whether the modulation is increasing or decreasing and whether the nonlinearity has hardening (Fig. 1)
or softening (Fig. 2) effects.

Besides, assuming the presence of a harmonic balance restricted to the fundamental component, the jump-down
frequency of the Duffing oscillator can be written as [54]

oJ �
1

21=2
1þ 1þ

3a
4m2

� �1=2
 !1=2

(9)

and the vibration amplitude at this frequency is given by

AJ �
2

3a 1þ
3a

4m2

� �1=2

�1

 ! !1=2

: (10)

For oJ to be real in a softening system (ao 0), the following condition is necessary:

aZaJ ¼�4m2=3: (11)

If this condition is not met, no jump-down will occur.
In addition, if the assumption 3a=ð4m2Þ51 is valid (this is quite restrictive if there is little damping), the jump-down

frequency can be written as oJ � 1þ3a=32m2 and the amplitude at the jump-down frequency is given by AJ � 1=2m. The
degree of nonlinearity alone is therefore not the main parameter here but how it compares with the damping, i.e., the ratio
3a=4m2 is the relevant parameter.

In a first-order approximation, the overall amplitude of the response of the system therefore depends mainly on the
damping, and the deviation of the jump-down frequency from the natural frequency of the associated linear system
(measurements obtained with a low-level excitation force) depends on the degree of nonlinearity and on the damping via
the ratio 3a=4m2.
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To sum up, the key idea on which this procedure is based is quadratic recast. It provides a closed form solution to the
continuation problem in the frequency domain with an arbitrarily large number of harmonics [39]. In addition, neither
iterative processes nor temporal sampling methods are required, and low convergence and possible aliasing problems are
thus avoided. The Duffing model introduced here serves as a pedagogical introduction to the HBM method based on the use
of the Manlab software program. This model is fairly representative of the various theoretical models for free and
encapsulated bubbles in viscous fluids that will now be analyzed.

3. Bubble in a viscous fluid

3.1. The ‘‘RPNNP’’ model

Let R be the radius of the vibrating bubble and R0 be the radius at rest. The ‘‘RPNNP’’ equation is

rL R €Rþ
3

2
_R

2
� �

¼ P0þ
2s
R0

� �
R0

R

� �3z

�
2s
R
�4ZL

_R

R
�P0þPcosOt, (12)

where P0 is the static pressure in the fluid, rL is the fluid density, s is the surface tension, ZL is the fluid viscosity, O is the
angular frequency of the plane pressure-wave and z is the polytropic exponent.

In order to be able to recast this expression in quadratic form, we take isothermal oscillations: z¼ 1. This working
hypothesis obviously does not correspond very closely to reality but it lends itself to the numerical limitations of the
present Manlabs software program, in which no differentiation of the non-integer order has yet been implemented.

We write t¼ot and dX=dt¼ _X . Taking u¼ R=R0, v¼ _R=R0, x¼ 1=u, y¼ x2, z¼ v2 and f ¼ PcosOt, Eq. (12) can be
rewritten as

_v ¼�
P0

rLo2R2
0

x�
2s=R0

rLo2R2
0

yþ
P0þ2s=R0

rLo2R2
0

y2�
4ZL

rLoR2
0

yv�
3

2
xzþ

1

rLo2R2
0

xf , (13)

where the respective coefficients are

A¼
P0

rLo2R2
0

, B¼
2s=R0

rLo2R2
0

, C ¼
4ZL

rLoR2
0

and D¼
1

rLo2R2
0

, (14)

and P0 ¼ 1:013� 105 Pa, rL ¼ 103 kg=m3, s¼ 72� 10�3 N=m, ZL ¼ 10�3 Pa s, o¼ 106 rad=s, R0 ¼ 2� 10�6 m (air bubble in
water of a micrometric size studied in the megahertz range). Eq. (13) can take the form of a quadratic system, giving the
following state space extension of vector Z:

_u ¼ v

_v ¼ �Ax�By þðAþBÞy2�Cyv�
3

2
xzþDxf

0 ¼ 1 �ux

0 ¼ y �x2

0 ¼ z �v2

0|{z}
mð _Z Þ

¼ �PcosðOtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
cðtÞ

f|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
lðZÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qðZ,ZÞ

,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(15)

where the space vector is Z¼ ½u, v, x, y, z, f �.
It can be observed here that the compact expression for the equivalent quadratic system is similar to (3). The unknown

vector Z (size Ne ¼ 5þ1) contains the original components u, v, plus the auxiliary variables x, y, z, f that have been added to
transform (12) into the quadratic form (15).

Since vector Z was written in the general form (4),

u¼
R

R0
¼ u0þ

XH

k ¼ 1

ðau,kcos kOtþbu,ksin kOtÞ: (16)

When the amplitude of the driving term is very low (PC0:01 Pa) in comparison with the other terms in Eq. (12), the graph
of amplitude A1 versus the angular frequency O describes the free response of the system. At low amplitudes, this
amplitude/frequency curve is still tangential to the linear mode, OL ¼o0 ¼ 8:72� 106 rad=s (cf. Table 1), and then
gradually bends to the left with the activation intensity: this corresponds to a ‘‘softening’’ system such as that depicted in
Figs. 2 and 3.

Note: In all the following figures, the angular frequency unit is 106 rad=s.
Changing radius R0 of the bubble or taking the surface tension s¼ 72� 10�3 N=m does not alter the overall shape of the

amplitude/angular frequency curve.
Only the ‘‘starting’’ angular frequency OL at which the amplitude is non-zero changes. This value is the undamped

natural frequency of the linear system (the nonlinear term set to zero) associated with Eq. (12): i.e., the Minnaert
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Table 1
Linear angular frequency without taking the surface tension into account (Minnaert) and taking this parameter into account (Robinson).

Radius R0 ðmm)

1 2 3 5 10 17

oMinnaert (106 rad=s) 17.43 8.72 5.81 3.49 1.74 1.025

oRobinson (106 rad=s) 24.33 10.58 6.66 3.80 1.82 1.05
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isothermal angular frequency when s¼ 0 or the Robinson and Buchanan [56] angular frequency when the surface tension
is taken into consideration.

The angular frequencies obtained with these two models expressed as functions of the radius are presented in Table 1;
these values fit the results obtained with the Manlab software program very closely; we systematically obtain
OL ¼oMinnaert (respectively, OL ¼oRobinson; sa0) when A1 ¼ 10�3.

Introducing the fluid viscosity (in the case of water, ZL ¼ 10�3 Pa s) into the model leads to changing the resonance
behavior of the bubble. In order to observe this resonance behavior, since the damping term is non-negligible here in
comparison with the other parameters featuring in the equation, it is necessary to increase the amplitude P of the driving
oscillator. In fact we can observe (cf. Fig. 4) the main resonance of the forced system which occurs when the angular
frequency of the driving harmonic component approaches that of the free system (in this case, R0 ¼ 2mm,
o0 ¼ 10:57� 106 rad/s), which corresponds to the angular frequency given by Houghton [57]:

oHoughton ¼
1

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g P0þ

2s
R0

� �
�

2s
R0

rL

�
4Z2

L

r2
L R2

0

vuuut
: (17)

Fig. 5 shows the evolution of the first, second and third harmonics versus the angular frequency, where the amplitude of
the driving source is P¼ 5� 104 Pa. The main resonance is given when O¼o0, but secondary resonances, called super-
harmonics, also occur when the angular activation frequency equals o0=2 or o0=3. At this secondary resonance, the
amplitude of the second harmonic becomes larger than that of the first one (the fundamental). This has been found to be a
useful means [58] of transmitting ultrasonic waves at the angular frequency O¼o0=2 with a sufficiently large amplitude
(PZ50 kPa¼ 0:5 atm) in order to perform nonlinear (harmonic) imaging of a bubble in water or in tissues. However, when
the amplitude of the driving wave is less than 10 kPa¼ 0:1 atm, the nonlinear character of the bubble response is ‘‘erased’’
(in water) by the viscous attenuation. A linear damped oscillator model may suffice in this case to characterize the bubble.

The frequency response curves obtained here obviously resemble those defined by the damped Duffing oscillator. The
Duffing model can therefore serve as a ‘‘canonical’’ model for the ‘‘free bubble in a viscous fluid system’’ and to characterize
this system with the following pair of parameters: the damping and the degree of nonlinearity.

If we take an isolated bubble in a viscous fluid, a numerical experiment can be performed (using the Matlab ‘‘ODE45’’
solver) in which the excitation amplitude is held constant but the frequency is varied continuously and linearly. Then, as
described in the previous section, the occurrence of jumps in the amplitude response will be observed.

If, for instance, the excitation is applied at a higher frequency than the natural linear frequency, a decreasing frequency
sweep will induce a larger jump in the amplitude than an increasing frequency sweep starting at a lower frequency than
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the natural frequency (cf. Fig. 6 versus Fig. 7). In practice, this means that a higher signal to noise ratio will be obtained in
the former case. In addition, this distinction between the increasing and the decreasing sweeps could serve as the basis of a
differential harmonic imaging procedure for detecting the presence of the bubbles.
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3.2. Dissipative effects of sound radiation

The radial pulsations of a bubble are affected by three damping mechanisms which are of some importance when
estimating the nonlinear behavior of the bubble. These effects are losses due to viscous processes occurring at the bubble
wall and to the thermal conduction and energy dissipation resulting from acoustic radiation. Although the first two effects
are included in the Rayleigh–Plesset (RPNNP) model (Eq. (12)), the dissipative processes due to the radiation of spherical
sound waves are not. A corrective term, which has been found to be a reliable index to these losses, is therefore generally
added [41,53], and the corresponding equation will now be studied.

As far as thermal losses are concerned, the polytropic nature of the gas compression induces hysteresis effects. Because
of the isothermal limitations of the Manlab software program, the net flow of heat into the liquid is necessarily null during
a pulsation cycle, and thermal damping cannot be taken into account in the present study.

The modified RPNNP model accounting for radiation damping can be written as [53,59]

rL R €Rþ
3

2
_R

2
� �

¼ pBðtÞ�P0þPcosOtþ
R

c
1�

_R

c

 !
dpB

dt
, (18)

where pBðtÞ is the pressure exerted on the liquid due to the pulsation of the bubble,
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: (19)

Substituting pBðtÞ into Eq. (20) gives the first-order approximation:
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Once again, the behavior is assumed to be isothermal (z¼ 1) because of the present numerical possibilities of the
Manlab software program.

Quadratic form recast: Eqs. (12) and (20) differ in the presence of the terms _R=c on the right-hand side. In order to derive
the associated quadratic form of Eq. (20), we re-use the variables defined in the above algebraic system (15), to which one
supplementary variable a¼ y2 and two supplementary constants E¼ ðAþBÞð3OR0=cÞ and F ¼ BOR0=c are added.

Eq. (20) is therefore equivalent to the following system of first-order differential equations:

uu ¼ v

vu ¼ �Ax�ByþðAþBÞa �Cvy�
3

2
xzþDxf�EavþFyv

0 ¼ 1 �xu

0 ¼ y �x2

0 ¼ z �v2

0 ¼ �PcosOt þ f

0 ¼ a �y2

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(21)

where Z¼ ½u, v, x, y, z, f , a�t . Once again, the operators in the formal expression

mð _ZÞ ¼ cðtÞþ lðZÞþqðZ,ZÞ (22)

can be easily identified in the above system.
In Fig. 8, the effects of radiation damping are clearly shown by the level of erosion undergone by the bending: it can be

seen here that the peak amplitude decreases only slightly when a linear up-chirp is applied (almost no differences
observed between damped and undamped responses) and the peak amplitude decreases significantly when the bubble is
activated by a linear down-chirp (strong differences observed between the two responses).

4. Shelled contrast agent

Most contrast agent bubbles are encapsulated in a shell that has two main effects on the acoustic response. First, the
shell renders the bubble stiffer than a free gas bubble of the same size, making its resonance frequency greater than that of
the free bubble and reducing the nonlinear effects. Second, since the shell makes the bubble more viscous, the sound
energy absorbed is converted into heat instead of being radiated; the scattering/attenuation ratio therefore decreases.
Many authors have concluded that the influence of the shell is crucial and have confirmed that the properties of the
acoustic field scattered by the agent are strongly dependent on the shell properties. Various shell models have been
proposed: Fox and Hertzfeld [60] studied bubbles in sea water and underlined the influence of the organic shell; De Jong
et al. [17,18] developed empirical models for Albunex; Church published a well-founded visco-elastic model [19] involving
linear material properties but also including nonlinear geometric effects; and Angelsen et al. [20] and Hoff et al. [21]
proposed an exponential stress strain relationship for the shell material. A few years back, Marmottant introduced a
‘‘buckling’’ model [23] accounting for buckling and rupture processes. The last two models will be analyzed here, but as we



Fig. 8. Radiation damping effects: amplitude of the first, second and third harmonics—P ¼ 5� 104 Pa.
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will focus on the physical trends associated with the shell mechanics, radiation damping will not be dealt with in the
following two paragraphs.

4.1. The polymer-shell contrast agent—Hoff model

Hoff modeled contrast agents assuming the existence of a low shell thickness, es, in comparison with the internal and
external radii, i.e. es5R1,R2. This assumption makes it possible to reduce the equation for the movement. Taking R2 to
denote the external radius of the shell and writing R¼ R2, the equation reduces to

rL R €Rþ
3

2
_R

2
� �

¼ P0þ
2s
R0
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�
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0eS

R3
1�

R0

R

� �
, (23)

where ms and Zs are the shear modulus and the shear viscosity of the shell, respectively, which can be determined
by performing ultrasound attenuation measurements. This relation is based on that given by Church in the case of
incompressible viscoelastic (Kelvin–Voigt) materials: the constitutive equation determines the radial component of the
stress tensor ðR1rrrR2Þ:

TS,r ¼ ðlSþ2mSÞ � rrerþ2lS
er

r
þ2ZSrr

_R1, (24)

where lS and mS are the Lam �e constants and er is the shell radial strain.
Quadratic form recast: Eqs. (12) and (23) differ only in the last two terms, which sum up the shell contribution. In order

to derive the associated quadratic form of Eq. (23), we use the variables defined in the algebraic system (15), to which the
two supplementary variables a¼ y2 and b¼ ax and the two supplementary constants E¼ 12mSeS=rLo2R3

0 and
F ¼ 12ZSeS=rLoR3

0 are added.
Eq. (23) is therefore equivalent to the following system:
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(25)

where Z¼ ½u, v, x, y, z, f , a, b�t .
This model was drawn up by Hoff for characterizing a contrast agent with a gas core and a polymer shell (such as AI-700

manufactured by Acusphere or Sonavist by Shering). Based on the assumption that the shell thickness equals 5 percent of
the nominal radius R0 of the contrast agent, comparisons with the theoretical predictions and experimental data make it
possible to assess the viscoelastic coefficients of the shell [21]: ms ¼ 11:6 MPa and Zs ¼ 0:48 Pa s.

Results: First, in order to assess the influence of the shear modulus ms component of the UCA response, the shear
viscosity is set at zero. Fig. 9 shows the evolution of the fundamental amplitudes A1 of four UCAs (radius R0 ¼ 3mm) with
shear modulus values of 11.6, 50, 88 and 150 MPa (these values are based on [19]). Increasing ms values correspond to
increasing shell rigidity, which restricts the amplitude of the oscillations and reduces the nonlinearity of the UCA
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responses. The values of the angular frequencies at which the amplitudes start to increase are completely in agreement
with those predicted by the closed-form expression obtained by linearizing equation (23) [21].

The first and second harmonic amplitude values are illustrated in Fig. 10 at a given shear modulus value (ms ¼ 11:6 MPa)
at two excitation levels (P¼ 5� 104 Pa, i.e. 0.5 atm and P¼ 105 Pa, i.e. 1 atm). The main resonance greatly exceeds the
secondary super-harmonic resonance. However, since in the latter case, the secondary harmonic amplitude is greater than
the fundamental one when the amplitude of the driving source is large enough (typically, of the order of 100 kPa), the
secondary resonance is still of interest for nonlinear tissue contrast imaging purposes. Besides, at a given shear modulus
(ms ¼ 11:6 MPa, for instance), the viscosity of the shell greatly reduces the oscillation amplitudes, as shown in Fig. 11. The
resonance is almost absent at viscosity values such as Zs ¼ 0:48 Pa s, which is in agreement with Hoff’s conclusion. Since the
experimental measurements [21] were performed on polydisperse UCA populations, the fact that multiple scattering was
not taken into account and the assumption that the properties (thickness, visco-elasticity) are constant suggest that in this
case, the shell viscosity was certainly over-estimated.

4.2. Phospholipid-coated contrast agent: the Marmottant model

In this case, we are interested in characterizing a lipid-shell UCA (e.g. Sonovue manufactured by Bracco, or Imagent by
Alliance): the model given in [23] corresponds to the following ordinary differential equation:
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where kS denotes the surface dilatational viscosity of the phospholipid monolayer coating. In the linear regime, the
changes in the surface tension with the area A can be expressed using the elastic compression modulus wS defined by
wS ¼ Aðds=dAÞ. In this regime, where no buckling and rupture of the monolayer occur, the surface tension is a linear
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function of the area, or of the square of the radius:

sðRÞ ¼ wS

R2

R2
b

�1

 !
, (27)

where Rb is the threshold radius at which buckling of the phospholipid molecules occurs.
Quadratic form recast: Let us take g ¼ xy, Z¼ ½u, v, x, y, z, f , g�t (variables u, v, x, y, z and f remain unchanged) and let us

define the following constants:
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Eq. (26) can be rewritten in the quadratic form:
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Fig. 12 shows the natural (P¼ 10�2 Pa) response of the undamped system (R0 ¼ Rf ¼ 1:98mm, wS ¼ 0:55 N=m and
ZL ¼ kS ¼ 0) as well as the forced response (P¼ 5� 104 Pa) of the damped system, taking only the liquid viscosity into
account (ZL ¼ 103 Pa s). The shell viscosity is also examined (kS ¼ 7:2� 10�9 N). The values of these parameters were based
on [23,25].

It can be seen from Fig. 12 that the system hardens at the lower activation amplitudes before softening as the driving
power increases. However, once again, taking the viscosity of both fluid and shell into account drastically reduces the
oscillation amplitude and abolishes the nonlinearity of the contrast agent’s behavior. This result is in agreement with
findings by Van der Meer et al. [25], who established that a simple oscillator model obtained by linearizing the Marmottant
model suffices to describe the radial oscillations of a UCA in response to a 40-kPa excitation amplitude. These conclusions
were based on experimental data obtained using the Brandaris ultra-fast video camera [25].

Fig. 13 shows the evolution of the first and second harmonics depending on the angular frequency O at various driving
source amplitude levels P. One can easily spot (on the A2 curve) the resonances occurring at O¼OL=2 and at O¼OL=3
when the source amplitude is greater than 100 kPa. It is worth noting that with both of the above models (at similar values
of P), at the secondary super-harmonic resonance (O¼OL=2), the amplitude of the second harmonic is lower than that of
the fundamental. However, here, at the super-harmonic resonance recorded at the highest pressure level, the amplitude of
the second harmonic exceeds the main resonance value; this situation has never been encountered so far.



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

Undamped free
A1, P = 5.104 Pa
A2, P = 5.104 Pa
A1, P = 105 Pa
A2, P = 105 Pa
A1, P = 5.105 Pa
A2, P = 5.105 Pa

Fig. 13. Effects of the excitation pressure on the first and second harmonics.

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
1

Undamped free
driven and damped (water)
Driven and damped (water+shell)

Fig. 12. Marmottant model: influence of the liquid and shell viscosities on the amplitude A1.

M.-C. Pauzin et al. / Journal of Sound and Vibration 330 (2011) 987–1004 999
5. Application to ‘‘small’’ bubble sizing

The problem of detecting and sizing microbubbles in their host environment has received considerable attention during
the last 30 years. In studies using only reflection measurements, most of the methods used have been based on the use of a
‘‘pumping’’ field [3–6,35,59,61–65], the frequency of which is approximately equal to the resonance frequency of the
bubble to be detected, associated with an ‘‘imaging’’ field with a higher frequency. When interacting nonlinearly with the
bubble, the two waves generate among all the sideband components sum and difference frequencies unambiguously
showing spectral peaks depending on the bubble radius. This robust double frequency method has mainly been applied in
two ways, depending on the possibility of synchronizing the pump and the imaging fields. Applications with no temporal
dependence between these two fields were first introduced. An improved version giving both lateral and axial resolutions
was then obtained using a pulsed Doppler approach [4]. A method involving a low frequency ‘‘manipulation’’ pulse altering
the scattering properties of the bubble and a phase-controlled high-frequency imaging pulse recently made it possible to
generate bubble detection signals [66]. However, when the aim is to detect small bubbles (with diameters ranging between
½1,10�mm), in order to prevent decompression sickness and to obtain accurate assessments of the bubble distribution using
current medical ultrasound equipment (frequency range [1, 15 MHz]), the double frequency method is no longer practical:
with these bubble sizes, the low frequencies required, ranging from 0.65 to 6.5 MHz, coincide with the frequency range of
the imaging field, and the relevant sideband components lie beyond the bandpass of the imaging transducers.

It is now proposed to use the nonlinear frequency bubble responses (under the same conditions as in Section 3.2,
including radiation damping, Eq. (20)) in order to obtain a small microbubble-detecting/sizing tool. It can be seen from
Figs. 14 and 15, which show the frequency responses of air bubbles in water (with the same physical parameters as in
Section 3) ranging between 1 and 10mm in size, that bubbles with a diameter of more than 2mm show strong
nonlinearities when excited by an acoustical pressure wave of 50 kPa. But this is not so in the case of bubbles with radii of
less than 1mm. However, as shown in Fig. 16, increasing the pressure exerted on a 2-mm diameter bubble twofold to
100 kPa restores the nonlinearity of its frequency response.

The nonlinear behavior induces the presence of jump-up and jump-down frequencies, which are specific features of the
bubble’s (placed in a given viscous fluid) size. If a bubble of a given size is insonified with linearly modulated chirps of
decreasing and increasing frequency sweeps which encompass its jump-up frequency, the response of the bubble will be
maximum and non-symmetrical, contrary to what occurs with those whose jump-up frequency is not included in this



Fig. 14. Frequency responses of bubbles (diameters 10, 4, 3mm) to a 50-kPa pressure wave in water.

Fig. 15. Frequency responses (log scale) of bubbles (diameters 3, 2, 1mm) to a 50-kPa pressure wave in water.

Fig. 16. Frequency responses of a 2-mm diameter bubble to 50-kPa (‘‘linear’’ behavior) and 100-kPa (nonlinear behavior) pressure waves in water.
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interval. For instance, the amplitude signal backscattered by a 4-mm bubble is 2 or 3 times greater than the signals
generated by bubbles whose radius differs only by 1mm. This resonance process is illustrated in Figs. 17–20. In the
numerical experiments with various bubble sizes dedicated to the detection of 4-mm bubbles, the 530ms activation signal
is linearly modulated from 1.46 MHz (9.169 Mrad/s) down to 1.41 MHz (8.855 Mrad/s) during the first half of the activation



Fig. 17. Response of a 10-mm bubble to a linear down/up chirp (range [1.41–1.46 MHz] in water).

Fig. 18. Response of a 5-mm bubble to the same pressure wave as in Fig. 17.

Fig. 19. Response of a 4-mm bubble to the same pressure wave as in Fig. 17.
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period before being up-modulated to 1.46 MHz during the second half. The responses of the bubble with time were
obtained using the ‘‘ODE45’’ Matlab solver.

The results obtained here show that the temporal responses of the bubbles whose diameters differed by more than
1mm as compared with the 4-mm reference bubble had symmetrical shapes. This was due to the fact that with these
bubbles, the jump-up frequency was not crossed by the frequency sweep. Therefore, only either the upper branch or the



Fig. 20. Response of a 3-mm bubble to the same pressure wave as in Fig. 17.

Fig. 21. Nonlinear signatures of various bubbles in response to an activation for 4-mm bubble detection purposes.
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lower branch of their frequency response was reversibly followed; however within the resonance zone of the 4-mm bubble,
the jump associated with the hysteretic behavior induced an asymmetrical time response. Hence, the idea arose of
extracting the signal envelope and calculating the differences between the samples recorded at the same instantaneous
frequency, which yields a nonlinear signature for each bubble.

Fig. 21 shows these signatures and proves, for instance, that by applying a simple threshold, it is possible to detect and
discriminate between bubbles with diameters in the ½1, 10�mm range with a theoretical resolution greater than 1mm.
6. Conclusion

Methods of characterizing bare and coated (contrast agent) microbubbles are of great interest in many industrial and
medical fields. In the search for relevant parameters (precursors) confirming the presence of microbubbles, showing their
patterns of size distribution, or yielding an unambiguous picture of their movements (free circulation versus endothelial
cell membrane adhesion), finer nonlinear tools and methods are required. This study, which extends previous standard
methods of linear analysis to include nonlinear (bubble) behavior, shows that the high order harmonic balance method
(HBM) is an efficient method: it provides a simple means, implemented in the Manlabs (open-access software) suite, of
investigating the behavior of nonlinear systems such as microbubbles in water. This method was based on the NonLinear
Ordinary Differential Equation (NL-ODE) governing the evolution with time of the bubble radius in response to ultrasonic
activation. A local periodic solution was obtained which can be ‘‘tracked’’ using a specific continuation technique in
conjunction with the HBM. The ‘‘manual’’ pre-processing of the NL-ODE consists in performing a quadratic recast of the
nonlinear equations. In the frequency domain, this yields a closed-form solution to the continuation problem with an
arbitrary number of harmonics. With this approach, various theoretical models for bubble responses in viscous fluids have
been studied, such as the ‘‘RPNNP’’ based model (that can possibly take radiation damping but not thermal damping into
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account) for a free microbubble response and the Hoff and Marmottant models, which are dedicated to shelled contrast
agents with polymer and phospholipid shells, respectively.

The results obtained using the overall procedure confirm the validity of this method, first by showing that although the
number of harmonics included in the computation should not be underestimated, the rapid asymptotic convergence
observed means that a fairly satisfactory level of accuracy can be obtained. Second, the results of the parametrical study
performed here are in good agreement with the data published in the literature, especially as far as the primary and
secondary resonances are concerned. In addition, jump-up and jump-down frequencies were observed and quantified, and
the shape of the frequency responses shows the existence of good agreement with the results obtained using a softening or
hardening damped Duffing oscillator depending on the strain law of the shell material. In addition, the HBM can be used as
a predictive tool to anticipate the hardening or softening behavior of the (encapsulated) microbubble in its host fluid, to
distinguish between linear and nonlinear bubble responses depending on the amplitude of the forcing pressure exerted,
and to estimate the damping of each harmonic component depending on the viscous properties of the host medium and
those of the shell material. As far as the stability of the branches is concerned, a little experience with bubble behavior
should suffice to be able to follow the relevant trajectory (dynamic response) of a bubble, depending on the type of
ultrasound activation (up/down chirps) used. Information about NL behavior is crucial to many applications, such as the
production of anti-cavitation fluids, monitoring the void fraction in environmental science and in nuclear coolants (liquid
sodium) and designing medical ultrasound contrast agents. Lastly, analysis of bubbles’ frequency responses shows that an
ultrasound spectroscopic method could be designed in which the jump-up frequency serves as an unambiguous index to
be depending on the bubble diameter. Using down/up chirps, the frequency ranges of which encompass the jump-up
frequency associated with a given diameter improves the detection signal to noise ratio of a bubble. Sizing ½1,10�-mm
bubbles is not possible using the so-called ‘‘double frequency’’ techniques, since the sideband components generated fall
outside the bandpass of the medical ultrasound transducers available. The theoretical resolution capacity of the present
method when dealing with (detecting and characterizing) a bubble measuring 4mm is greater than 1mm.
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